# **CIRCULAR TÉCNICA**

n. 432 - setembro 2025

ISSN 0103-4413

Empresa de Pesquisa Agropecuária de Minas Gerais Departamento de Informação Tecnológica

Av. José Cândido da Silveira, 1647 - União - 31170-495 Belo Horizonte - MG - www.epamig.br - Tel. (31) 3489-5000







# Estudo da resposta morfogênica de gemas apicais de oliveira à variação do 6-benzilaminopurina (BAP) e do ácido naftalenoacético (ANA)<sup>1</sup>

Luciana Cardoso Nogueira Londe<sup>2</sup>, Bruna Rafaella Alves da Silva<sup>3</sup>, Izabela Cristina Pires Gomes<sup>4</sup>, Débora Ferreira de Souza<sup>5</sup>, Joana D'ark Nunes da Silva Lima<sup>6</sup>, Emerson Brito Ribeiro<sup>7</sup>, Állef Vinicius Oliveira Silva<sup>8</sup>, Samy Pimenta<sup>9</sup>

### INTRODUÇÃO

A Olea europaea L., conhecida como oliveira, pertence à família botânica Oleaceae, a qual inclui espécies amplamente distribuídas em regiões tropicais e temperadas. Dentre os 29 gêneros dessa família, destacam-se os de interesse econômico e hortícolas, como Fraxinus, Jasminum, Ligustrum e Olea, sendo este último representado por 35 espécies, das quais apenas a Olea europaea L. produz fruto comestível (Gandul-Rojas; Mínguez-Mosquera, 2006).

O Brasil, embora a produção de azeite ainda seja incipiente, figura entre os maiores importadores mundiais, com cerca de 80 mil toneladas adquiridas em 2023 (FAO, 2023). O consumo está relacionado com fatores ligados à saúde, no entanto, o preço ele-

vado limita seu acesso, em comparação a outros óleos (Sá, 2024). A produção nacional de mudas de oliveira, concentrada sobretudo no Rio Grande do Sul, ainda é insuficiente para atender à demanda.

Os principais métodos de propagação da oliveira são a estaquia e a enxertia, uma vez que a propagação via sementes resulta em plantas desuniformes e com longo período juvenil.

Contudo, a cultura de tecidos da oliveira enfrenta desafios, como a recalcitrância da espécie e a forte dominância apical (Standardi; Micheli; Piccioni, 1998). O uso de fitorreguladores, especialmente citocininas, como a 6-benzilaminopurina (BAP), e auxinas, como o ácido naftalenoacético (ANA), é fundamental para promover o crescimento e a morfogênese dos

Apoio FAPEMIG.

Circular Técnica produzida pela EPAMIG Norte - CEGR, (38) 3834-1760, cegr@epamig.br.

<sup>&</sup>lt;sup>2</sup>Bióloga, D.Sc., Pesq. EPAMIG Norte - CEGR, Bolsista BIP - A FAPEMIG, Nova Porteirinha, MG, luciana@epamig.br.

<sup>&</sup>lt;sup>3</sup>Graduanda Agronomia UNIMONTES, Campus Janaúba, Bolsista CNPq/EPAMIG Norte - CEGR, Nova Porteirinha, MG, brunarafaellaagro@gmail.com.

<sup>&</sup>lt;sup>4</sup>Engenheira-agrônoma, M.Sc., Bolsista BDCTI Nível I FAPEMIG/EPAMIG Norte - CEGR, Nova Porteirinha, MG, belapgomes@yahoo.com.br.

<sup>&</sup>lt;sup>5</sup>Engenheira-agrônoma, Mestranda Produção Vegetal no Semi-Árido UNIMONTES, Bolsista BDCTI Nível III FAPEMIG/ EPAMIG Norte - CEGR, Nova Porteirinha, MG, fdesouza@gmail.com.

<sup>&</sup>lt;sup>6</sup>Graduanda Agronomia UNIMONTES, Campus Janaúba, Bolsista BIC FAPEMIG/EPAMIG Norte - CEGR, Nova Porteirinha, MG, joanadark93\_@hotmail.com.

<sup>&</sup>lt;sup>7</sup>Técnico Química, Mestrando Biotecnologia UNIMONTES, EPAMIG Norte - CEGR, Nova Porteirinha, MG, emersondireito1@hotmail.com.

<sup>&</sup>lt;sup>8</sup>Graduando Agronomia UNIMONTES, Campus Janaúba, Bolsista BIC FAPEMIG/EPAMIG Norte - CEGR, Nova Porteirinha, MG, oliveiras.allef@gmail.com.

<sup>&</sup>lt;sup>9</sup>Engenheiro-agrônomo, D.Sc., Prof. UNIMONTES, Bolsista BIPDT FAPEMIG, Campus Janaúba, Janaúba, MG, samy.pimenta@unimontes.br.

Londe, L.C.N. et al. 2

tecidos cultivados (Pasqual, 2001). A eficácia desses reguladores varia conforme o tipo de explante, a espécie e as concentrações utilizadas (Santos, 2022).

Esta Circular Técnica tem por objetivo determinar as melhores combinações entre os fitorreguladores BAP e ANA para o desenvolvimento de estruturas vegetativas, a partir de explantes apicais de oliveira 'Koroneiki', cultivados in vitro.

## **CONDUÇÃO DO EXPERIMENTO**

O experimento foi conduzido na EPAMIG Norte - Campo Experimental do Gorutuba (CEGR), Nova Porteirinha, MG. A região apresenta clima tropical úmido, típico do Cerrado, com estação seca no inverno e chuvosa no verão, precipitação média anual de 900 mm e temperatura média de 24 °C.

Foram utilizados 150 explantes apicais da oliveira 'Koroneiki', oriundos de plantas cultivadas a campo. Os explantes foram cultivados em meio de cultura Murashige & Skoog (MS) (Murashige; Skoog, 1962), a 75% de concentração, suplementado com 25 combinações de doses de BAP e de ANA, em arranjo fatorial 5 x 5, com concentrações de 0,0; 0,05; 0,10; 0,15 e 0,20 mg/L para ambos os fitorreguladores (Tabela 1).

As combinações resultaram em tratamentos de T1 a T25, com delineamento inteiramente casualizado (DIC), utilizando seis repetições por tratamento. Os frascos com meio de cultura foram autoclavados a 121 °C, por 20 minutos, para esterilização.

O processo de desinfestação dos explantes seguiu etapas rigorosas: após lavagem em água cor-

Tabela 1 - Tratamentos com as combinações de doses de 6-benzilaminopurina (BAP) e de ácido naftalenoacético (ANA), em concentrações de 0,0; 0.05: 0.10: 0.15 e 0.20 mg/L

| 0,00, 0,10, 0,10 0 0,20 1119/2 |              |       |                        |      |      |      |      |  |  |
|--------------------------------|--------------|-------|------------------------|------|------|------|------|--|--|
|                                |              |       | BAP                    |      |      |      |      |  |  |
| ANA                            |              |       | (mg/L)                 |      |      |      |      |  |  |
|                                |              |       | Concentração           |      |      |      |      |  |  |
| (mg/L)                         |              | mg/L) | 0,0                    | 0,05 | 0,10 | 0,15 | 0,20 |  |  |
|                                |              |       | Tratamento/Combinações |      |      |      |      |  |  |
|                                | Concentração | 0,0   | T1                     | T6   | T11  | T16  | T21  |  |  |
|                                |              | 0,05  | T2                     | T7   | T12  | T17  | T22  |  |  |
|                                |              | 0,10  | ТЗ                     | Т8   | T13  | T18  | T23  |  |  |
|                                |              | 0,15  | T4                     | Т9   | T14  | T19  | T24  |  |  |
|                                |              | 0,20  | T5                     | T10  | T15  | T20  | T25  |  |  |
|                                |              |       |                        |      |      |      |      |  |  |

Fonte: Elaboração dos autores.

Nota: T - Tratamento.

rente e detergente neutro, os explantes foram imersos em álcool 70%, por 1 minuto, seguidos de desinfecção com hipoclorito de sódio (NaClO) (2,0%-2,5%) por 15 minutos, sempre intercalando lavagens triplas com água ultrapura autoclavada. O manuseio final ocorreu sob câmara de fluxo laminar estéril.

Após o cultivo inicial no escuro, por oito dias, os frascos foram transferidos para sala de crescimento, com fotoperíodo de 16 horas de luz e 8 horas de escuro, à temperatura controlada de 26 ± 1 °C. As avaliações foram conduzidas após 90 dias de cultivo. As variáveis analisadas foram: presença ou ausência de oxidação (identificada por coloração escura nos tecidos) (Fig.1), contaminação (observação visual de crescimento de fungos ou bactérias) (Fig. 2) e presença de calos (Fig. 3).

Figura 1 - Oxidação em explantes apicais da oliveira 'Koroneiki'



Figura 2 - Contaminação em explantes apicais da oliveira

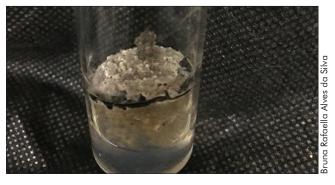
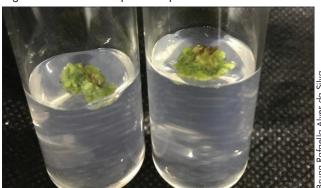




Figura 3 - Calos em explantes apicais da oliveira 'Koroneiki'

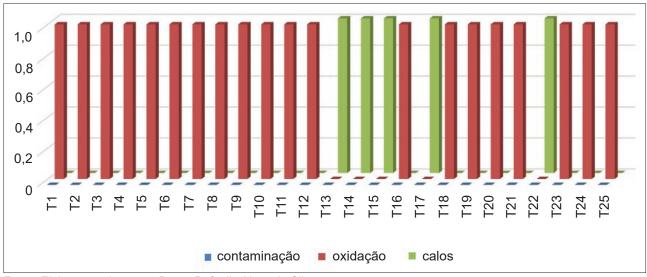


Para altura e largura, foi utilizado paquímetro digital. As variáveis categóricas foram analisadas pela moda, enquanto as quantitativas passaram por teste de normalidade (Shapiro-Wilk), transformação pela raiz quadrada de (x+1), análise de variância (ANOVA) e teste de médias de Tukey a 5% de significância, utilizando o software Genes (Cruz, 2016).

#### **RESULTADOS E DISCUSSÃO**

A ausência total de contaminação, em todos os tratamentos, evidenciou a eficácia do protocolo de assepsia utilizado, conforme já relatado em estudos anteriores por Londe et al. (2024). Entre os tratamentos, apenas os T13, T14, T15, T17 e T22 não apresentaram oxidação nos tecidos dos explantes, o que representou 20% dos casos avaliados (Gráfico 1). Esses tratamentos também se destacaram com a presença de calos bem desenvolvidos, sugerindo que a combinação hormonal utilizada contribuiu positivamente tanto para a morfogênese quanto para a integridade do tecido vegetal, possivelmente por um efeito indireto antioxidante (Sartor et al., 2013).

A análise estatística das variáveis, altura e largura dos calos, revelou diferenças significativas, influenciadas principalmente pelas concentrações de BAP e pela interação entre BAP e ANA. As maiores médias para altura de calos foram observadas nos tratamentos T12, T13, T14, T15 e T22. O tratamento T15 (ANA 0,20 mg/L + BAP 0,10 mg/L) destacou-se como, estatisticamente, superior a T11 e T12, sendo


agrupado com T13 e T14, que também apresentaram excelente desempenho (Tabela 2).

Em relação à largura dos calos, os maiores valores foram encontrados em T13, T14, T15 e T22. O tratamento T15 mais uma vez destacou-se, sendo, estatisticamente, superior a T11 e T12, enquanto T13 e T14 apresentaram desempenhos similares. O tratamento T22 foi estatisticamente semelhante a T12 e T17, mas superior a T2 e T7, confirmando sua eficácia (Tabela 3).

Observou-se que as combinações com BAP entre 0,10 e 0,20 mg/L, especialmente em associação com ANA entre 0,05 e 0,20 mg/L, proporcionaram maior desenvolvimento calogênico. Por outro lado, nos tratamentos com BAP em doses mais baixas (0,0 e 0,05 mg/L), independentemente da concentração de ANA, não houve diferenças estatísticas significativas, indicando que essas doses foram insuficientes para estimular a formação de calos.

Esses resultados confirmam o destaque da atuação das citocininas na divisão celular e na formação de tecidos meristemáticos. No entanto, em alguns tratamentos, como T13 (ANA 0,10 mg/L + BAP 0,10 mg/L), T14 (ANA 0,15 mg/L + BAP 0,10 mg/L) e T15 (ANA 0,20 mg/L + BAP 0,10 mg/L), em que a concentração de ANA foi igual ou superior à de BAP, também foram observados bons resultados. Isso reforça a importância do equilíbrio hormonal entre citocininas e auxinas, indicando que tanto a predominância de BAP quanto uma proporção balanceada com ANA podem ser eficazes para a indução de calos em explantes de oliveira.

Gráfico 1 - Representação gráfica de moda única de presença de contaminação, oxidação e calos de explante de plântulas de oliveira (*Olea europaea* L.), cultivar Koroneiki, submetidas a diferentes combinações de doses de ácido naftalenacético (ANA) e de 6-benzilaminopurina (BAP) – EPAMIG Norte - Campo Experimental do Gorutuba (CEGR), Nova Porteirinha, MG, 2025



Fonte: Elaboração da autora Bruna Rafaella Alves da Silva.

Nota: T - Tratamento.

Londe, L.C.N. et al.

Tabela 2 - Teste de médias para a variável altura (mm) de calos de plântulas de oliveira (*Olea europaea* L.), cultivar Koroneiki, submetidos a diferentes doses de ácido naftalenacético (ANA) e de 6-benzilaminopurina – EPAMIG Norte - Campo Experimental do Gorutuba (CEGR), Nova Porteirinha, MG, 2025

| ANA<br>(mg/L) |      | BAP<br>(mg/L) |           |             |            |              |  |  |
|---------------|------|---------------|-----------|-------------|------------|--------------|--|--|
|               |      | Concentração  |           |             |            |              |  |  |
|               |      | 0,0           | 0,05      | 0,10        | 0,15       | 0,20         |  |  |
| 0             | 0,0  | T1-1.0Aa      | T6-1.0Aa  | T11-1.0Ab   | T16-1.0Aa  | T21-1.0Ac    |  |  |
| .açã          | 0,05 | T2-1.0Ba      | T7-1.0Ba  | T12-1.5ABab | T17-1.9ABa | T22-2.5Aa    |  |  |
| entr          | 0,10 | T3-1.0Ba      | T8-1.0Ba  | T13-2.2Aa   | T18-1.6ABa | T23-2.1Aab   |  |  |
| Concentração  | 0,15 | T4-1.0Ba      | T9-1.0Ba  | T14-2.0Aa   | T19-1.3ABa | T24-1.4ABbc  |  |  |
| Ö             | 0,20 | T5-1.0Ba      | T10-1.2Ba | T15-2.5Aa   | T20-1.2Ba  | T25-1.8ABabc |  |  |

Fonte: Elaboração dos autores.

Nota: Médias seguidas pelas mesmas letras maiúsculas na horizontal e letras minúsculas na vertical não diferem estatisticamente entre si, pelo teste Tukey a 5% de significância.

Tabela 3 - Teste de médias para a variável largura (mm) de calos de plântulas de oliveira (*Olea Europaea* L.), cultivar Koroneiki, submetidos a diferentes doses de ácido naftalenacético (ANA) e de 6-benzilaminopurina (BAP) – EPAMIG Norte - Campo Experimental do Gorutuba (CEGR), Nova Porteirinha, MG, 2025

|               |      |              |           | BAP         |            |             |  |  |
|---------------|------|--------------|-----------|-------------|------------|-------------|--|--|
| ANA<br>(mg/L) |      | (mg/L)       |           |             |            |             |  |  |
|               |      | Concentração |           |             |            |             |  |  |
|               |      | 0,0          | 0,05      | 0,10        | 0,15       | 0,20        |  |  |
| 0             | 0,0  | T1-1.0Aa     | T6-1.0Aa  | T11-1.0Ac   | T16-1.0Aa  | T21-1.0Ab   |  |  |
| açã           | 0,05 | T2-1.0Ba     | T7-1.0Ba  | T12-1.7ABbc | T17-1.8ABa | T22-3.0Aa   |  |  |
| Concentração  | 0,10 | T3-1.0Ba     | T8-1.0Ba  | T13-2.7Aab  | T18-2.0ABa | T23-2.1ABab |  |  |
| ouc           | 0,15 | T4-1.0Ba     | T9-1.0Ba  | T14-2.6Aab  | T19-1.3Ba  | T24-1.5ABb  |  |  |
| O             | 0,20 | T5-1.0Ba     | T10-1.3Ba | T15-3.2Aa   | T20-1.3Ba  | T25-2.0ABab |  |  |

Fonte: Elaboração dos autores.

Nota: Médias seguidas pelas mesmas letras maiúsculas na horizontal e letras minúsculas na vertical não diferem estatisticamente entre si, pelo teste Tukey a 5% de significância.

#### **CONSIDERAÇÕES FINAIS**

A interação entre BAP e ANA influencia significativamente a formação de calos em gemas apicais de oliveira 'Koroneiki'. Os tratamentos T12, T13, T14, T15, T17 e T22 apresentaram os melhores resultados. A maior proporção de BAP favoreceu a calogênese, mas a combinação com ANA, em proporções equilibradas, também se mostrou eficaz. A ausência de contaminação e a baixa oxidação reforçam a viabilidade do protocolo para aplicação futura, em escala comercial, contribuindo com o desenvolvimento da olivicultura no Brasil.

#### **AGRADECIMENTO**

À Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Fapemig) pelo apoio à pesquisa, "Produção de mudas de oliveira com alta qualidade genética e sanitária por meio de técnicas biotecnológicas".

### **REFERÊNCIAS**

CRUZ, C.D. Genes Software - extended and integrated with the R, Matlab and Selegen. **Acta Scientiarum**: Agronomy, Maringá, v.38, n.4, p.547-552, 2016.

FAO. FAOSTAT Statistical Database. **Olive oil imports**. Rome: FAO, 2023. Disponível em: https://www.fao.org/faostat. Acesso em: 15 jun. 2025.

GANDUL-ROJAS, B.; MÍNGUEZ-MOSQUERA, M.I. Olive processing. *In*: HUI, Y. H. (ed.). **Handbook of fruits and fruit processing**. Oxford: Blackwell Publishing, 2006. p.491-517.

LONDE, L.C.N. *et al.* **Cultura de calos a partir de explantes de oliveira da cultivar Koroneiki**. Belo Horizonte: EPAMIG, 2024. 3p. (EPAMIG. Circular Técnica, 410).

MURASHIGE, T.; SKOOG, F. A revised médium for rapid growth and bio assays with tobacco tissue cultures. **Physiologia Plantarum**, Sweden, v.15, n.3, p.473-497, 1962.

PASQUAL, M. **Meios de cultura**: cultura de tecidos vegetais: tecnologia e aplicações. Lavras: UFLA/FAEPE, 2001. 74p.

SÁ, D. de G.C.F. de. A olivicultura e o azeite no Brasil. Rio de Janeiro: Embrapa Agroindústria de Alimentos, 2024. 26p. (Embrapa Agroindústria de Alimentos. Documentos, 148).

SANTOS, L.J. da S. Multiplicação *in vitro* de pitaya (*Hylocereus costaricensis*) sob diferentes concentrações de 6-benzilaminopurina. 2022. Trabalho de Conclusão de Curso (Bacharelado em

Engenharia de Bioprocessos e Biotecnologia) – Universidade do Estado da Bahia, Juazeiro, 2022.

SARTOR, F.R. *et al.* Diferentes meios de cultura e antioxidantes no estabelecimento *in vitro* do jacarandá da Bahia. **Bioscience Journal**, Uberlândia, v.29, n.2, p.408-411, 2013.

STANDARDI, A.; MICHELI, M.; PICCIONI, E. Propagazione in vitro dell'olivo: acquisizione e prospettive. **Rivista di Frutticoltura**, Bolonha, n.7/8, p.19-23, 1998.