

Importância, produção e utilização da silagem de grãos de milho reidratados

Introdução

A silagem de grãos de milho reidratados é uma tecnologia que busca melhorar a eficiência da utilização do milho na dieta de ruminantes. Esta Cartilha é uma entrega do Projeto "Custo de produção, desempenho animal e popularização do uso das silagens de grãos de milho reidratados e de capim BRS Capiaçú na dieta de vacas leiteiras na região do Campo das Vertentes", e tem por objetivo auxiliar pequenos produtores de Minas Gerais, em especial os da região Campo das Vertentes, a aprimorarem o manejo nutricional das vacas leiteiras.

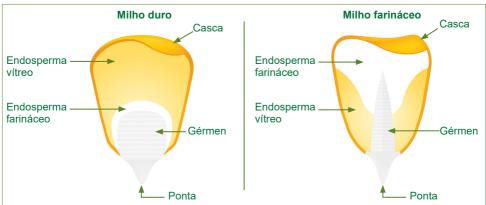
Essa iniciativa está alinhada ao Plano Estadual de Ação Climática de Minas Gerais (Plac-MG). No setor agropecuário, o Plac-MG tem como meta reduzir as emissões de metano na pecuária bovina, e como subações: promover o aprimoramento da qualidade e da manipulação da dieta animal; realizar cursos sobre formulação e manejo de dietas e incentivar práticas nutricionais que contribuam para diminuir a produção de hidrogênio (H₂) durante a fermentação ruminal.

A utilização da silagem de grãos de milho reidratados auxilia a redução das emissões de metano, pois aumenta a produção de propionato, um ácido graxo que, além de fornecer energia à vaca, sequestra o $\rm H_2$ livre no rúmen. O Projeto também contempla ações de capacitação técnica, voltadas à confecção de silagens, às noções básicas para formulação de dietas e à avaliação de custos de produção, integrando práticas sustentáveis que promovem a melhoria da eficiência produtiva e ambiental da pecuária leiteira mineira.

Importância do milho na nutrição de vacas

O Brasil está entre os maiores produtores de leite do mundo e Minas Gerais destaca-se como líder nacional, respondendo por quase 30% de toda a produção de leite do País.

Na maioria das fazendas, independentemente do sistema de criação ou da quantidade de leite produzida, é comum o uso de alimentos concentrados para o rebanho. Em algumas propriedades, a compra destes alimentos pode consumir mais de 40% da renda obtida com a venda do leite.


O milho é o principal ingrediente utilizado no concentrado e pode representar até 65% da fórmula. Por ser o principal cereal energético, o preço do milho exerce grande influência sobre o custo de produção do leite. Aumentar a eficiência de utilização do milho é ponto fundamental para obter maior lucratividade no Sistema de Produção.

Morfologia do grão de milho

Em média, um grão de milho possui 72% de amido, 9,5% de proteínas, 9% de fibra e 4% de óleo, distribuídos em quatro estruturas (Fig. 1):

- a) ponta ou pedicelo: corresponde a até 2% do grão, é a menor estrutura, a única que não é coberta pelo pericarpo; composta por material lignocelulósico e que tem a função de fixar o grão ao sabugo;
- b) pericarpo ou casca: é a camada externa que protege as outras estruturas do grão, representa cerca de 5% do peso total, é altamente fibrosa sendo constituída por hemicelulose e celulose;
- c) embrião ou gérmen: é a estrutura reprodutiva, que equivale a aproximadamente 11% da semente, possuindo alto teor de lipídeos (35%) e de proteínas (19%), e baixo teor de amido (8%);
- d) endosperma: é a estrutura que armazena energia; representa mais de 80% do peso do grão; e sua composição média é de 86% de amido, 10% de proteínas e pequenas quantidades de gorduras e minerais.

Figura 1 - Morfologia do grão de milho duro x farináceo

Fonte: https://sementesbiomatrix.com.br/blog/milho-flint-e-dentado/.

Endosperma

O endosperma é a estrutura responsável pelo alto valor nutritivo do grão de milho. Sua textura pode ser vítrea ou farinácea, dependendo da forma como os grânulos de amido organizam-se em relação à matriz proteica, que é formada por diferentes proteínas: prolaminas, albuminas, globulinas e glutelinas. Dentre estas, as prolaminas têm maior relevância na nutrição de ruminantes, pois são ricas no aminoácido prolina, que possui caráter hidrofóbico, apresentando baixa solubilidade em água e no fluido ruminal.

No endosperma vítreo, os grânulos de amido apresentam forma helicoidal e estão densamente compactados e envolvidos por uma matriz proteica espessa, contínua e rica em prolamina (Fig. 2). Essa conformação dificulta a penetração da água e a ação das enzimas, responsáveis pela quebra do amido em glicose, o que reduz sua digestibilidade.

19µm W0+13 mm Spynk A-5E1 Des 19 Mar 2008 EEØ III W0+13 mm Spynk A

Figura 2 - Microscopia eletrônica do endosperma vítreo

Fonte: Davide, 2009. Tese DS UFLA.

Já no endosperma farináceo, os grânulos de amido encontram-se mais dispersos, com formato esférico, e ligados de maneira fraca a uma matriz proteica menos densa, formada por lâminas finas e fragmentadas (Fig. 3). Esta organização facilita a entrada de água e de enzimas, resultando em maior eficiência na digestão.

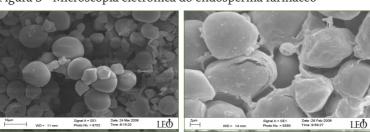


Figura 3 - Microscopia eletrônica do endosperma farináceo

Fonte: Davide, 2009. Tese DS UFLA.

Vitreosidade

A vitreosidade é a análise que mensura a proporção de endosperma vítreo em relação ao endosperma total, uma medida objetiva que se relaciona com o teor de prolamina e com a digestibilidade do amido presente no grão de milho. Esta análise é mais precisa em grãos maduros, nos quais a estrutura já está completamente formada.

Embora os híbridos de milho maduros apresentem pouca variação no teor de amido, estes diferem-se, consideravelmente, quanto à vitreosidade. O milho maduro moído, comumente utilizado nos concentrados de vacas leiteiras, apresenta máxima vitreosidade e, consequentemente, menor digestibilidade.

Uma avaliação de híbridos brasileiros e norte-americanos demonstrou que híbridos brasileiros apresentam vitreosidade entre 64,2% e 80,0%, com degradabilidade ruminal média de 48,5%, enquanto híbridos norte-americanos variam de 34,9% a 62,3% de vitreosidade, com degradabilidade média de 77,4% (Gráfico 1).

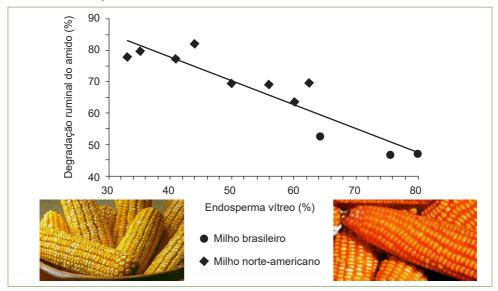


Gráfico 1 - Avaliação de híbridos de milho norte-americanos e brasileiros

Fonte: Adaptado de Correa et al. (2002). JDS 85:3008.

Silagem de grãos de milho reidratados

Historicamente, o milho produzido no Brasil é selecionado por características agronômicas. Os grãos são predominantemente duros, resistentes à quebra durante a colheita, a secagem, o transporte e o armazenamento, além de serem menos vulneráveis ao ataque de insetos e fungos. Entretanto, do ponto de vista nutricional, esses grãos apresentam baixa digestibilidade no rúmen, assim como no restante do trato gastrointestinal das vacas, problema que eleva a excreção de milho nas fezes.

Para contrapor o desafio de utilizar dietas com alto teor de milho com textura dura do endosperma, a silagem de grãos de milho reidratados tem-se destacado como ferramenta tecnológica que possibilita aumentar a digestibilidade do amido, associado ao armazenamento de baixo custo do grão na fazenda.

A técnica de reidratação, também chamada reconstituição, consiste em adicionar água ao grão de milho maduro e moído, até atingir uma umidade adequada para sua fermentação no silo. Na ausência de oxigênio, a atividade microbiana converte carboidratos solúveis em ácido lático, promovendo a conservação do material. Durante a fermentação, os microrganismos também realizam a proteólise das prolaminas, o que aumenta a disponibilidade do amido, melhorando o valor nutricional do milho, principalmente para os grãos duros.

Na comparação dos processamentos de moer ou reidratar e ensilar, utilizando grãos de milho duros e farináceos, é possível verificar que o ganho de digestibilidade é consideravelmente maior para o milho duro (Gráfico 2). Isso demonstra que a técnica de reidratar e ensilar é ainda mais eficaz quando utilizada nos híbridos brasileiros.

Milho farináceo

Gráfico 2 - Digestibilidade do grão de milho duro ou farináceo submetido a diferentes

Fonte: Andrade et al., 2009. Anais SBZ.

Milho duro

Silagem de grão reidratado x Silagem de grão úmido

Algumas pessoas confundem a silagem de grão reidratado com a silagem de grão úmido. Para a confecção da silagem de grão reidratado é utilizado o milho colhido seco, enquanto que para a silagem de grão úmido, os grãos de milho são colhidos imaturos, no estádio de maturação da linha negra (Fig. 4).

Figura 4 - Estádio de maturação da linha negra

USE CALID

A silagem de grão úmido já era utilizada previamente à silagem de grão reidratado. Como mencionado, os grãos são colhidos no estádio de maturação da linha negra, ponto em que os grãos apresentam cerca de 30% de umidade. Diante da alta umidade do grão, o processamento é feito por moinho de rolos, não sendo possível selecionar a granulometria de moagem. A silagem apresenta tamanho de partícula maior e mais padronizado.

A vantagem da silagem de grão úmido é que os grãos colhidos ainda imaturos apresentam maior degradabilidade. A deposição de prolamina no endosperma é um processo que aumenta conforme o grão amadurece, tornando-o mais denso e menos degradável.

A silagem de grão úmido, entretanto, apresenta importantes limitações que dificultam sua produção: o curto período ideal de colheita e a necessidade de equipamentos específicos. Assim, a reidratação de grãos colhidos já maduros surgiu como alternativa para superar essas dificuldades.

Vantagens da silagem de grãos reidratados

A silagem de grãos de milho reidratados é pertinente e aplicável para todos os produtores de leite, independentemente do tamanho ou do nível de produção do rebanho. Quando o plantio de grãos é realizado na propriedade, utilizar o milho reidratado permite maior intervalo para colheita e demanda maquinário de fácil acesso. Mas se o produtor pretende adquirir o grão, é possível planejar a compra estratégica, conforme o valor de mercado.

Além das vantagens apresentadas, utilizar a silagem de grãos de milho reidratados possibilita:

- a) reduzir o custo de transporte do milho;
- b) reduzir o custo de armazenamento do milho;
- c) selecionar a granulometria de moagem;
- d) concentrar a operação de moagem;
- e) aumentar a digestibilidade do amido;
- f) aumentar a eficiência alimentar (leite/consumo).

Estruturas de armazenamento

A estrutura de armazenamento para esse tipo de silagem é bem menor quando comparada a silos de forragens. Para pequenos produtores, é possível improvisar utilizando-se desde caixas d'água, latões, manilhas, cochos inutilizados ou o que considerar viável (Fig. 5).

Figura 5 - Opções de armazenamento de baixo investimento

Foto: A - Renata Apocalypse Nogueira. Foto: B - https://www.youtube.com/watch?v=6tAYaB0MnF

É importante atentar para uma boa compactação e vedação do material. Locais que possuem paredes porosas, é recomendado envelopar a silagem com lona, para melhor preservação (Fig. 6). Assim como para silagens de planta inteira, cuidados básicos são necessários para garantir o padrão e a qualidade do material ensilado.

Figura 6 - Envelopar o material ensilado para melhor preservação

No caso de grandes propriedades, é recomendável o uso de silo bag ou a construção de um local apropriado em alvenaria (Fig. 7).

Figura 7 - Silo bag e construção em alvenaria

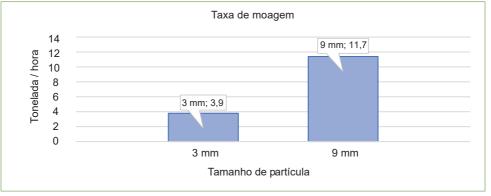
tao.com.br/milho-reidratado-naalimentacao-dos-bovinos-e-umaboa-opcao/. Foto: B - Débora Bihaivo Comide

Estruturas de armazenamento maiores precisam ser dimensionadas conforme o consumo diário. Para esse dimensionamento deve ser considerada uma fatia mínima de retirada. Como silagens de grãos são mais densas do que silagens de planta inteira, recomenda-se uma retirada mínima de 15 cm, para reduzir a exposição da massa ensilada ao oxigênio, evitando perdas.

Grau de moagem e tempo de armazenamento

A tecnologia da silagem de grãos de milho reidratados é especialmente vantajosa para o milho vítreo brasileiro, pois combina três formas de processamento: a moagem, a hidratação e a ensilagem. A associação de tais processos resulta em maior digestibilidade do grão.

Não existe um valor fixo para o crivo da peneira de moagem nem para o tempo de armazenamento da silagem. O produtor deve definir esses parâmetros de acordo com a rotina e as necessidades da fazenda, já que esta decisão influencia diretamente a eficiência de trabalho, o consumo de energia e o ganho de digestibilidade do milho.


A moagem tem a função de romper a camada externa do grão e de reduzir o tamanho de partícula. Um menor tamanho de partícula aumenta a digestibilidade, pois amplia a área de superfície exposta dos nutrientes presentes no endosperma e no gérmen. Esta maior área de contato favorece a adesão das bactérias do rúmen e o acesso das enzimas digestivas, tornando o tamanho de partícula um fator crítico na digestão do amido do milho.

Sob o ponto de vista da ação bacteriana, o tamanho de partícula ideal seria o menor possível. No entanto, à medida que o tamanho de partícula diminui, aumenta o consumo de energia, em razão do maior tempo de retenção no triturador, o que reduz a taxa de produção. Assim, o grau de moagem interfere diretamente no tempo gasto para a confecção da silagem.

O consumo de energia e o rendimento do moinho dependem, geralmente, do tamanho de partícula, do tipo de grão e do tipo de moinho utilizado. Em grãos de milho de alta vitreosidade, moídos em moinhos de martelo, observou-se que o rendimento foi cerca de três vezes maior ao usar peneira com crivo de 9 mm em comparação à peneira com crivo de 3 mm (Gráfico 3).

Gráfico 3 - Taxa de moagem de grãos de milho moídos em peneiras com crivo de 3 e 9 mm

Fonte: Castro et al., 2019. J. Dairy Sci. 2019. 102: 9857

O tempo de armazenamento define o período em que a atividade microbiana atua na proteólise das prolaminas. Este intervalo afeta tanto a eficiência operacional quanto a econômica da produção de silagem de grãos de milho reidratados.

Um curto tempo de armazenamento possibilita o uso rápido dos grãos adquiridos ou colhidos na propriedade, reduzindo a necessidade de capital de giro para compra e estocagem. Entretanto, um período muito curto pode diminuir o efeito desejado da ensilagem sobre a digestibilidade do amido.

Estudos demonstram que, até cerca de 50 dias de ensilagem, os ganhos de digestibilidade são mais expressivos, mantendo-se, porém, em menor magnitude após esse período. Por isso, recomenda-se que a silagem permaneça armazenada por, pelo menos, 60 dias antes do uso.

Em situações em que for necessário um período de armazenamento mais curto, recomenda-se reduzir o tamanho de partícula. Ainda assim, os benefícios de períodos mais longos de ensilagem costumam ser superiores aos obtidos pela simples redução do tamanho das partículas.

Em termos práticos, a silagem de grãos de milho reidratados que for rapidamente utilizada para a alimentação dos animais deverá ter tamanho de partícula menor, e a que não for utilizada imediatamente para confecção da silagem poderá ter tamanho de partícula maior.

Uso de inoculantes

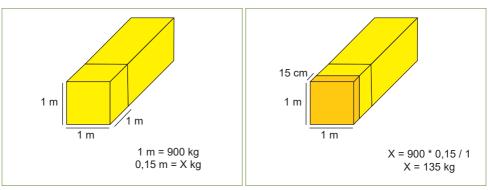
As silagens de grãos de milho reidratados são frequentemente relatadas como de lenta fermentação. Além disso, o estresse sofrido pelos grãos durante a secagem no campo ou o aquecimento em secadores comerciais pode alterar a população microbiana natural presente no milho. Por esse motivo, é recomendado o uso de inoculantes.

Outro fator importante é que o investimento financeiro necessário para a produção da silagem de grãos é consideravelmente maior em comparação à silagem de planta inteira, o que justifica a utilização dos inoculantes. A inoculação de silagens de grãos reidratados é interessante para acelerar a queda do pH, melhorando o padrão fermentativo e inibindo microrganismos deterioradores. Para tanto, bactérias homofermentativas são mais eficientes. A queda do pH também auxilia na estabilidade aeróbia, pois evita crescimento de microrganismos indesejáveis que podem atuar após a abertura do silo.

Apesar da silagem de grãos permitir uma boa compactação, o alto valor nutricional aumenta sua propensão à deterioração aeróbia. Assim, bactérias heterofermentativas, como *L. buchneri* ou *Hilfardii*, também são interessantes de forma combinada. Além disso, deve-se considerar que a atividade proteolítica bacteriana é o principal mecanismo de degradação das prolaminas, o que eleva a digestibilidade do amido. Mas para que a inoculação seja eficiente e justificável, é essencial seguir Boas Práticas na confecção da silagem, especialmente quanto à homogeneização da água, ao local de armazenamento e à vedação adequada do silo.

Cálculos de planejamento e confecção da silagem de grãos de milho reidratados

Dimensionamento do silo


Inicialmente, é preciso estabelecer o gasto diário para dimensionar a estrutura de armazenamento.

Compartimentos menores somente são viáveis para baixa demanda diária, inferior a 50 kg/dia.

Para dimensionar silos maiores, considera-se a densidade de 900 kg/m^3 para o armazenamento em silos de 1 m de altura x 1 m de largura.

Na Figura 8, considerando-se a fatia de 15 cm com densidade de 900 kg/m 3 , estima-se a quantidade de retirada do silo por uma regra de três simples.

Figura 8 - Esquema demonstrando a fatia de corte diário e exemplo de cálculo do dimensionamento do silo

Fonte: Elaboração da autora Débora Ribeiro Gomide.

No exemplo, a fatia de 15 cm, em silo de 1 m de altura x 1 m de largura, fornecerá diariamente 135 kg de silagem de grãos de milho reidratados. Caso o gasto diário seja menor que a quantidade estimada, as dimensões do silo devem ser reduzidas, adequando-as às necessidades da fazenda.

O comprimento do silo é estimado de acordo com a camada de corte diária e o número de dias de utilização.

Considerando-se o exemplo anterior, onde é realizada uma camada de corte diária de $15~\rm cm$ (0,15 m), e ao utilizar a silagem por $180~\rm dias$, o silo deverá ter $27~\rm m$ de comprimento.

Caso o comprimento estimado seja muito longo, e até mesmo para facilitar o manejo, é recomendável dividir a estrutura de armazenamento em mais de uma, conforme demonstrado na Figura 9.

Quando se trabalha com apenas um local de armazenamento, é necessário utilizar toda a silagem para iniciar a confecção de uma nova, o que pode comprometer a rotina da fazenda e inviabilizar a compra estratégica do milho grão.

Figura 9 - Silo longo e silo dividido em comprimentos menores

Inclusão de água

Para um melhor perfil de fermentação, sem a formação de grande quantidade de efluentes, o teor de umidade ideal é próximo a 35%. Este teor corresponde a uma grande quantidade de água, que, caso não seja bem-incorporada ao milho moído, poderá ocorrer perda do material ensilado, principalmente pela formação de efluentes e pelo crescimento de microrganismos indesejáveis, como clostrídios, enterobactérias, fungos e leveduras.

Para calcular a inclusão de água, inicialmente é preciso determinar a umidade presente no grão de milho que será utilizado. Tal informação pode ser aferida por meio de equipamentos medidores de umidade. Silos utilizados para armazenamento de grãos normalmente padronizam a umidade em torno de 10% para a estocagem. Assim, caso não seja possível determinar a umidade, para o cálculo pode-se considerar que o grão de milho seco possui 12% de umidade, o que corresponde a 88% de matéria seca (MS).

O cálculo é feito a partir da fórmula a seguir:

Quantidade de silagem x (100 - umidade da silagem) / MS do milho grão

Assim, para confeccionar uma silagem com 35% de umidade, utilizando-se grãos com 12% de umidade, calcula-se:

Para um tambor de 200 kg

200 x (100 – 35) / 88 200 x 65 / 88 13.000 / 88 = 148 kg de milho 52 kg de água

Consumo de 135 kg/d 1 mês = 4.050 kg 4.050 x (100 - 35) / 88

4.050 x 65 / 88 263.250 / 88 = 2.991 kg de milho 1.058 kg de água

Consumo de 135 kg/d 180 dias = 24.300 kg

24.300 x (100 – 35) / 88 24.300 x 65 / 88 1.579.500 / 88 = 17.949 kg de milho 6.351 kg de água

Essa fórmula resulta na quantidade necessária de milho grão moído. A diferença dos quilos de silagem que estão sendo confeccionados para a quantidade de milho moído resulta na quantidade de água que será adicionada.

Quando uma menor quantidade de silagem é confeccionada, a mistura da água ao milho moído pode ser feita de forma manual ou com o auxílio de algum equipamento, como vagão forrageiro ou betoneira (Fig. 10 e 11).

Figura 10 - Mistura do milho moído com água de forma manual e com betoneira

Foto: A - Renata Apocalypse Nogueira Pereii Foto: B - Débora Ribeiro Gomide

Figura 11 - Mistura do milho moído com água em vagão forrageiro

Quando a confecção é de quantidades maiores, existem equipamentos adaptados que incorporam a água na hora da moagem. Mas, inicialmente, é preciso medir a vazão da água e a capacidade de moagem, para determinar a mistura ideal (Fig. 12).

Figura 12 - Moinho adaptado para mistura do milho moído com água

Durante a confecção da silagem, é necessário monitorar o teor de MS do material, que deve estar em 65%, o que corresponde a 35% de umidade na silagem.

A determinação da MS pode ser feita utilizando-se micro-ondas, air fryer ou até mesmo frigideira. Para isso, a amostra é coletada, pesada, seca, e novamente pesada. A diferença entre os pesos indica a quantidade de água evaporada.

Recomenda-se utilizar amostras de 100 g, para facilitar o cálculo. Por exemplo, se uma amostra de 100 g de silagem, após a secagem, pesa 60 g, isso significa que a silagem possui 40% de umidade e 60% de MS.

Outra forma, embora menos precisa, de avaliar a umidade da silagem é apertar um punhado do material na mão. Quando a silagem apresenta umidade próxima a ideal, ao ser pressionada, a água aparece entre os dedos, mas não escorre pelo braço. Ao abrir a mão, o material mantém-se unido (Fig. 13).

Figura 13 - Avaliação da umidade da silagem

milho-reidratado

A aplicação do inoculante pode ser feita utilizando-se um regador, uma bomba costal exclusiva para essa finalidade, ou diluindo-o na água de hidratação. Sempre que possível, o ideal é diluir o inoculante na água de hidratação, pois isso garante que todo o material ensilado fique bem homogeneizado ao inoculante.

Cálculo da economia com a utilização da silagem dos grãos de milho reidratados

Existem inúmeras vantagens na utilização da silagem de grãos de milho reidratados, principalmente para o Brasil que utiliza híbridos de milho com alta vitreosidade.

No site Milkverso¹, plataforma de capacitação profissional para o setor leiteiro, foram sugeridas diferentes formas para estimar a economia no gasto de milho, ao adotar a silagem de grãos de milho reidratados. Por exemplo, considerando o consumo de 100 kg/dia de milho moído, tem-se o gasto de 3.000 kg/mês. O ganho em rendimento é de no mínimo 30%, em virtude do acréscimo de água e da utilização da mesma quantidade de milho moído.

- » Para obter redução na compra de grãos de milho, deve-se calcular:
 - quantidade a ser adquirida x 1,3 = 3.000 kg
 - quantidade a ser adquirida = 3.000 kg / 1,3
 - quantidade a ser adquirida = 2.307 kg
 3.000 kg 2.307 kg = 693 kg

Significa que será necessário comprar menos 693 kg de milho por mês.

- » Para obter maior rendimento do milho adquirido:
 - ao adquirir 3.000 kg de milho + 30%
 3.000 kg x 1,3 = 3.900 kg

Significa que será possível tratar dos animais por mais 9 dias.

- » Para obter menor valor pago pelo quilo de milho grão:
 - Se o quilo do milho custa R\$2,00 e o gasto for menos 30%
 R\$2,00 / 1,3 = R\$1,54

Significa que ao utilizar a silagem de grãos de milho reidratados será pago R\$1,54 pelo quilo do milho.

¹Cálculos foram retirados do site https://www.milkverso.com.br/homepage Milho Reidratado ABC.

Fórmulas de concentrado utilizando a silagem de grãos de milho reidratados

A formulação da dieta de vacas leiteiras deve ser elaborada de acordo com as exigências nutricionais específicas de cada animal, considerando-se fatores como: fase de lactação, nível de produção de leite e peso corporal.

A qualidade e a disponibilidade do volumoso também são determinantes para a formulação da dieta. O concentrado atua como complemento energético e proteico, ajustando a dieta conforme a composição do volumoso. Por isso, a formulação deve sempre considerar a análise bromatológica do volumoso disponível.

Para melhores resultados, recomenda-se que a formulação seja acompanhada por um técnico capacitado, zootecnista ou médico-veterinário, ou profissionais de empresas especializadas em suplementação e nutrição animal. Esses profissionais utilizam programas de formulação e análises laboratoriais de alimentos para ajustar a dieta de forma precisa, otimizando desempenho, eficiência alimentar e rentabilidade do sistema.

Na Tabela 1 estão descritas algumas formulações de concentrados que utilizam a silagem de grãos de milho reidratados. As variações entre as formulações permitem ajustar o teor proteico de acordo com o nível de produção e a qualidade do volumoso disponível.

Tabela 1 - Formulações de concentrados utilizando a silagem de grãos de milho reidratados

Ingrediente (%)	Proteína bruta (PB) (%)					
	24	24	20	20	16	16
Silagem de grãos de mi- lho reidratados	64,6	71,8	73,6	80,6	82,0	88,8
Farelo de soja	31,6	23,4	22,6	14,6	14,2	6,4
Calcário calcítico	2,4	2,4	2,4	2,4	2,4	2,4
Sal branco	0,6	0,6	0,6	0,6	0,6	0,6
Minerais e vitaminas	0,8	0,8	0,8	0,8	0,8	0,8
Ureia	0,0	1,0	0,0	1,0	0,0	1,0

Fonte: Marco Antônio Canestri, Agrônomo Emater-MG.

Projeto

Custo de produção, desempenho animal e popularização do uso das silagens de grãos de milho reidratados e de capim Capiaçu na dieta de vacas leiteiras na região do Campo das Vertentes - APQ-05889-24 - Fapemig.

Cartilha. Importância, produção e utilização da silagem de grãos de milho reidratados, 2025

Autores

Débora Ribeiro Gomide Renata Apocalypse Nogueira Pereira Marcos Neves Pereira Carla Luiza da Silva Ávila

Produção

Departamento de Informação Tecnológica

Fabriciano Chaves Amaral

Divisão de Produção Editorial

Ângela Batista P. Carvalho

Revisão

Rosely A. Ribeiro Battista Pereira Maria Luiza Almeida Dias Trotta

Projeto Gráfico e diagramação

Débora Silva Nigri

Foto da capa

Imagem gerada por IA com ChatGPT

Apoio

AGRICULTURA, PECUÁRIA E ABASTECIMENTO

EPAMIG Sul

Campo Experimental de Três Pontas (CETP)
Rodovia MG 167, km 11, caixa postal 91 - Zona Rural, CEP 37190-000 - Três Pontas - MG
(35) 9 8433-6872 / (35) 9 8433-9964

